Подпишись и читай
самые интересные
статьи первым!

3 условная вероятность. Условная вероятность

Рассмотрим задачу. Студент перед экзаменом выучил из 30 билетов билеты с номерами с 1 по 5 и с 26 по 30. Известно, что студент на экзамене вытащил билет с номером, не превышающим 20. Какова вероятность, что студент вытащил выученный билет?

Определим пространство элементарных исходов: W=(1,2,3,...,28,29,30). Пусть событие А заключается в том, чтостудент вытащил выученный билет: А = (1,...,5,26,...,30,), а событие В - в том, что студент вытащил билет из первых двадцати: В = (1,2,3,...,20)

Событие состоит из пяти исходов: (1,2,3,4,5), и его вероятность равна 5/30. Это число можно представить как произведение дробей 5/20 и 20/30. Число 20/30 – это вероятность события B . Число 5/20 можно рассматривать как вероятность события А при условии, что событие В произошло (обозначим её Р (А /В )). Таким образом, решение задачи определяется формулой

Р (А /В ) = P (А ÇВ ) /Р (B ) (2)

Р (А /В ) называется условной вероятностью события A при условии, что событие В произошло . Формулу (2) можно рассматривать, как определение условной вероятности . Эту же формулу можно переписать в виде

P (А ÇВ ) = Р (А /В )Р (B )(3)

Формула (3) называется формулой умножения вероятностей или теоремой умножения вероятностей, а условная вероятность Р (А /В ) здесь должна восприниматься просто по смыслу.

Пример 2 . Из урны, содержащей 7 белых и 3 черных шаров, наудачу один за другим извлекают (без возвращения) два шара. Какова вероятность того, что первый шар будет белым, а второй черным?

Пусть X – событие, состоящее в извлечении первым белого шара, а Y - событие, состоящее в извлечении вторым черного шара. Тогда событие, заключающееся в том, что первый шар будет белым, а второй - черным. P (Y /X ) =3/9 =1/3 - условная вероятность извлечения вторым черного шара, если первым был извлечен белый. Учитывая, что P (X ) = 7/10, по формуле умножения вероятностей получаем: P () = 7/30

Событие А называется независимым от события В (иначе: события А и В называются независимыми), если Р (А /В )=Р (А ). За определение независимых событий можно принять следствие последней формулы и формулы умножения

P (А ÇВ ) = Р (А ) Р (B )

Докажите самостоятельно, что если А и В - независимые события, то и тоже являются независимыми событиями.

Пример 3 . Найти вероятность того, что при трёх бросках игральной кости три раза выпадет шестёрка. Очевидно, что при каждом броске результат не зависит от результатов предыдущих бросков, и искомая вероятность равна (1/6) 3 = 1/216.

Пример 4 . Определим в условиях этой задачи вероятность того, что при трёх бросках в сумме выпало 4 очка. Выпишем благоприятные исходы: “1–1–2”, “1–2–1”, “2–1–1”. Вероятность каждого из этих исходов равна 1/216. Так как все эти исходы несовместимы, интересующая нас вероятность будет равна 3/216 = 1/72.



Пример 5 . Из колоды карт в 32 листа извлекается одна карта. Пусть А – событие, состоящее в том, что извлечённая карта – дама. Событие В состоит в том, что извлечённая карта пиковой масти. Очевидно, что Р (А ) = 4/32 = 1/8. Вычислим величину вероятность того, что извлечённая карта –дама при условии, что эта карта пиковой масти, то есть Р (А/В ). Очевидно, что Р (А ÇВ ) = 1/32, и Р (В ) = 8/32. Тогда Р (А/В ) = Р (А ÇВ )/ Р (В ) = 1/8, то есть Р (А ) = Р (А/В ). Отсюда следует, что события А и В независимы.

Пусть событие С заключается в том, что извлечённая карта не туз. Покажем, что события А и С зависимы. Очевидно, что Р (А ÇС ) = Р (А ) = 1/8. Р (С ) = 28/32 = 7/8. Отсюда получаем Р (А/С ) = 1/7, и это не равно величине Р (А ), следовательно, события А и С зависимы.

Пример 6 . Рассмотрим задачу, аналогичную задаче из примера 2, но с одним дополнительным условием: вытащив первый шар, запоминаем его цвет и возвращаем шар в урну, после чего все шары перемешиваем. В данном случае результат второго извлечения никак не зависит от того, какой шар – черный или белый появился при первом извлечении. Вероятность появления первым белого шара (событие А ) равна 7/10. Вероятность события В – появления вторым черного шара – равна 3/10. Теперь формула умножения вероятностей дает: P (А ÇВ ) = 21/100.

Извлечение шаров способом, описанным в этом примере, называется выборкой с возвращением или возвратной выборкой.

Следует отметить, что если в задаче с шарами положить количество белых и черных шаров равным соответственно 7000 и 3000, то результаты расчетов тех же вероятностей будут отличаться пренебрежимо мало для возвратной и безвозвратной выборок.

Рассмотрим задачи на применение теорем сложения и умножения вероятностей.

1. Три стрелка стреляют в мишень. Каждый попадает в мишень или не попадает в мишень независимо от результатов выстрелов остальных стрелков. Первый стрелок попадает в мишень с вероятностью 0,9, второй – с вероятностью 0,8, а третий – с вероятностью 0,7. Найти вероятность того, что мишень будет поражена?

Вопрос можно поставить иначе: какова вероятность того, что хотя бы один стрелок попадёт в мишень? Очевидно, что мишень будет поражена, если все трое попадут в мишень, если в мишень попадут любые двое стрелков, а третий не попадёт и т. д. Пусть событие А состоит в том, что хотя бы один из стрелков попал в мишень. Тогда противоположное событие заключается в том, что все трое не попали в мишень . Если первый не попадает в мишень с вероятностью 0,1, второй – с вероятностью 0,2, а третий – с вероятностью 0,3, то по теореме умножения вероятностей Р() = 0,1×0,2×0,3 = 0,006. Тогда Р(А) = 1 – Р() = 0,994.

2. При включении двигатель начинает работать с вероятностью р . а) Найти вероятность того, что двигатель начнёт работать со второго включения.

б) Найти вероятность того, что для запуска двигателя потребуется не более двух включений.

а) Для того, чтобы двигатель начал работать со второго включения, нужно, во-первых, чтобы он не запустился при первом включении (событие А ). Это происходит с вероятностью 1 – р . При втором включении двигатель запустится (событие В ) с вероятностью р . Нас интересует вероятность события А ÇВ . Из условия задачи можно понять, что события А и В независимы. Отсюда P (А ÇВ ) = р (1 – р ).

б) Нас интересует вероятность события, состоящего в том, что двигатель запустится при первом включении или при втором включении. Противоположное событие заключается в том, что двигатель не запустится ни при первом, ни при втором включении. Вероятность этого противоположного события равна (1 – р ) 2 . Отсюда вероятность интересующего нас события равна 1 – (1 – р ) 2 .

3 . В семье Ивановых 4 ребёнка. Известно, что один из детей – мальчик. Найти вероятность того, что все дети – мальчики. Принять вероятность рождения мальчика и вероятность рождения девочки равными 1/2 и не зависящими от того, какого пола дети уже имеются в семье.

Пусть событие В состоит в том, что все дети в семье – мальчики, событие А состоит в том, что в семье есть хотя бы один мальчик (именно так мы должны понимать условие задачи). Нас интересует величина Р (В/А ). Для того, чтобы воспользоваться формулой условной вероятности, надо, во-первых, вычислить P (А ÇВ ). В нашем случае событие А является следствием события В , поэтому P (А ÇВ ) = Р (В ) (смотри объяснение к теме 2). По условию задачи Р (В ) = (1/2) 4 = 1/16. Чтобы вычислить Р (А ), заметим, что событие состоит в том, что все дети в семье –девочки. Очевидно, что Р () = (1/2) 4 = 1/16. Тогда Р (А ) = 1 – Р () = 15/16. Теперь можно воспользоваться формулой для определения условной вероятности Р (В /А ) = P (А ÇВ )/Р (А ). В результате получается Р (В /А ) = (1/16)/(15/16) = 1/15.

Если бы в условии этой задачи был поставлен вопрос “чему равна вероятность того, что все дети мальчики, при условии, что второй ребёнок – мальчик?”, то ответ был бы 1/8.

4 . В урне семь белых и три чёрных шара. Без возвращения извлекаются три шара. Известно, что среди них есть чёрный шар. Найти вероятность того, что другие два шара белые.

Пусть событие А состоит в том, что в выборке есть два белых шара, событие В – в том, что в выборке есть чёрный шар. Всего в условии задачи существует возможных исходов. Отсюда Р (А ÇВ ) = . Чтобы вычислить вероятность Р (В ), заметим, что состоит в том, что все извлечённые шары белые, и Р () = . Искомая вероятность равна ()/(1 – ) = 63/85.

5. Студент знает 20 из 25 вопросов программы. Зачёт сдан, если студент ответит не менее чем на 3 из 4-х вопросов в билете. Взглянув на первый вопрос, студент обнаружил, что знает его. Какова вероятность, что студент сдаст зачёт?

Пусть А - событие, заключающееся в том, что студент сдал экзамен;

В - событие, заключающееся в том, что студент знает первый вопрос в билете.

Очевидно, что Р (В ) =20/25 = 4/5. Теперь необходимо определить вероятность Р (А ÇВ ). Из двадцати пяти вопросов можно составить различных билетов, содержащих четыре вопроса. Все билеты, выбор которых удовлетворял бы и событию А, и событию В , должны быть составлены следующим образом: либо студент знает все вопросы билета (можно составить всего таких билетов), либо студент знает первый, второй и третий вопросы, но не знает четвёртого (можно составить всего 5таких билетов), либо студент знает первый, второй и четвёртый вопросы, но не знает третьего (тоже 5билетов), либо студент знает первый, третий и четвёртый вопросы, но не знает второго (тоже 5билетов). Отсюда получаем, что

Р (А ÇВ ) =

Осталось только найти искомую вероятность р (А/В):

Р (А/В) =

Задачи для самостоятельного решения.

1) . Вероятность попасть в самолёт равна 0,4, вероятность его сбить равна 0,1. Найти вероятность того, что при попадании в самолёт он будет сбит.

2) . Из урны, содержащей 6 белых и 4 чёрных шара, наудачу извлекают по одному шару до появления чёрного шара. Найти вероятность того, что придётся производить четвёртое извлечение, если выборка производится а) с возвращением; б) без возвращения.

3) а) В условиях задачи 1 найти вероятность того, что в мишень попали двое стрелков. б) В условиях задачи 1 найти вероятность того, что в мишень попали не менее двух стрелков.

4) По самолёту производится три выстрела. Вероятность попадания при первом выстреле равна 0,5, при втором – 0,6, при третьем – 0,8. При одном попадании самолёт будет сбит с вероятностью 0,3, при двух – с вероятностью 0,6, при трёх самолёт будет сбит наверняка. Какова вероятность того, что самолёт будет сбит?

5) Вероятность того, что случайным образом выбранный из студенческой группы студент знает английский язык, равна 5/6. Вероятность того, что студент знает французский язык, равна 7/12. Вероятность того, что студент знает и английский и французский языки, равна 1/2. а) Найти вероятность того, что студент не знает французского языка при условии, что он не знает английского. б) Найти вероятность того, что студент знает французский язык при условии, что он знает английский.

Ответы. 1)1/4; 2) а) 0,216; б) 1/6; 3) а) 0,398; б) 0,902; 4) 0,594; 5) а) 0,5; б) 0,3.

Мы уже говорили, что в основе определения вероятности события лежит некоторая совокупность условий. Если никаких ограничений, кроме условий, при вычислении вероятности не налагается, то такие вероятности называются безусловными.

Однако в ряде случаев приходится находить вероятности событий при дополнительном условии, что произошло некоторое событие В, имеющее не нулевую вероятность, т.е. Данные вероятности мы будем называть условными и обозначать символом; это означает вероятность события А при условии, что событие В произошло.

Пример 1. Брошены две игральные кости. Чему равна вероятность того, что сумма выпавших на них очков равна 8 (событие A), если известно, что эта сумма есть четное число (событие В)?

Все возможные случаи, которые могут представиться при бросании двух костей, мы запишем в таблице 1.7.1, каждая клетка которой содержит запись возможного события: на первом месте в скобках указывается число очков, выпавших на первой кости, на втором месте -- число очков, выпавших на второй кости.

Общее число возможных случаев -- 36, благоприятствующих событию A -- 5. Таким образом, безусловная вероятность.

Если событие В произошло, то осуществилась одна из 18 (а не 36) возможностей и, следовательно, условная вероятность равна.

Пример 2. Из колоды карт последовательно вынуты две карты. Найти: а) безусловную вероятность того, что вторая карта окажется тузом (неизвестно, какая карта была вынута вначале), и б) условную вероятность, что вторая карта будет тузом, если первоначально был вынут туз.

Обозначим через A событие, состоящее в появлении туза на втором месте, а через В--событие, состоящее в появлении туза на первом месте. Ясно, что имеет место равенство.

В силу несовместимости событий АВ и АВ имеем:

При вынимании двух карт из колоды в 36 карт могут произойти 36*35 (учитывая порядок!) случаев. Из них благоприятствующих событию АВ -- 4*3 случаев, а событию -- 32 * 4 случаев. Таким образом,

Если первая карта есть туз, то в колоде осталось 35 карт и среди них только три туза. Следовательно, .

Общее решение задачи нахождения условной вероятности для классического определения вероятности не представляет труда. В самом деле, пусть из n единственно возможных, несовместимых и равновероятных событий событию А благоприятствует m событий. Если событие В произошло, то это означает, что наступило одно из событий, благоприятствующих В. При этом условии событию А благоприятствуют r и только r событий Aj, благоприятствующих АВ. Таким образом,

Точно так же можно вывести, что

Понятно, что

т. е. вероятность произведения двух событий равна произведению вероятности одного из этих событий на условную вероятность другого при условии, что первое произошло.

Теорема умножения применима и в том случае, когда одно из событий А или В есть невозможное событие, так как в этом случае вместе с имеют место равенства и.

Условная вероятность обладает всеми свойствами вероятности. В этом легко убедиться, проверив, что она удовлетворяет всем свойствам, сформулированных в предыдущих параграфах. Действительно, первое свойство выполняется очевидным образом, поскольку для каждого события А определена неотрицательная функция. Если, то

Проверка третьего свойства также не составляет труда и мы предоставляем читателю ее осуществление.

Заметим, что вероятностное пространство для условных вероятностей задается следующей тройкой.

Определение 1. Говорят, что событие А независимо от события В, если имеет место равенство т. е. если наступление события В не изменяет вероятности появления события А.

Если событие А независимо от В, то имеет место равенство

Отсюда находим: т. е. событие В также независимо от А. Таким образом, свойство независимости событий взаимно.

Если события А и В независимы, то независимы также события А и. Действительно, так как

Отсюда мы делаем важное заключение: если события А и В независимы, то независимы также каждые два события.

Понятие независимости событий играет значительную роль в теории вероятностей и в ее приложениях. В частности, большая часть результатов, изложенных в настоящем пособии, получена в предположении независимости тех или иных рассматриваемых событий.

Так, например, ясно, что выпадение герба на одной монете не изменяет вероятности появления герба (решки) на другой монете, если только эти монеты во время бросания не связаны между собой (например, жестко не скреплены). Точно так же рождение мальчика у одной матери не изменяет вероятности появления мальчика (девочки) у другой матери. Это -- события независимые.

Для независимых событий теорема умножения принимает особенно простой вид, а именно, если события A и В независимы, то

Мы обобщим теперь понятие независимости двух событий на совокупность нескольких событий.

Определение 2. События называются независимыми в совокупности, если для любого события из их числа и произвольных из их же числа события и взаимно независимы. В силу предыдущего это определение эквивалентно: при любых

Заметим, что для независимости в совокупности нескольких событий недостаточно их по парной независимости. В этом можно убедиться на следующем простом примере.

Пример С.Н. Бернштейна. Представим себе, что грани тетраэдра окрашены: 1-я -- в красный цвет (A), 2-я -- в зеленый (В), третья -- в синий (С) и 4-я -- во все эти три цвета (AВС). Легко видеть, что вероятность выпадения грани, на которую упадет тетраэдр при бросании, и своей окраске иметь красный цвет равна 1/2: граней четыре и две из них имеют в окраске красный цвет.

события A,В,С, таким образом, попарно независимы.

Однако, если нам известно, что осуществились события В и С, то заведомо осуществилось и событие A, т. е. .

Таким образом, события A,В,С в совокупности зависимы. Таким образом, в общем случае при по определению

(В случае условная вероятность остается неопределенной.) Это позволяет нам перенести автоматически на общее понятие вероятности все определения и результаты настоящего параграфа.

Лекция 4

Принцип практической невозможности маловероятных событий

Если случайное событие имеет очень маленькую вероятность, то практически можно считать, что в единичном испытании это событие не наступит. Все зависит от конкретной задачи. Если вероятность нераскрытия парашюта 0,01, то такой парашют применять нельзя. Если электричка опоздает с вероятностью 0,01 то можно быть уверенным что она прибудет вовремя.

Достаточно малую вероятность, при которой в данной задаче событие можно считать практически невозможным, называют уровнем значимости. На практике обычно принимают уровни значимости от 0,01 до 0,05.

Если случайное событие имеет вероятность очень близкую к единице, то практически можно считать, что в единичном испытании это событие наступит.

Условная вероятность

Произведением двух событий A и B называют событие АВ, состоящее в совместном появлении (совме­щении) этих событий. Например, если A - деталь годная, В - деталь окрашенная, то АВ - деталь годна и окрашена.

Произведением нескольких событий называют событие, состоящее в совместном появлении всех этих событ ий. Например, если A , B , C - появление «герба» соответственно в первом, втором и третьем бросаниях монеты, то ABC - выпадение «герба» во всех трех испытаниях.

Во введении случайное событие определено как событие, которое при осуществлении совокупности усло­вий S может произойти или не произойти.

Если при вы­числении вероятности события никаких других ограни­чений, кроме условий S, не налагается, то такую вероят­ность называют безусловной ; если же налагаются и другие дополнительные условия, то вероятность события называют условной.

Например, часто вычисляют вероятность собы­тия B при дополнительном условии, что произошло со­бытие A . Безусловная вероятность, строго говоря, является условной, поскольку предполагается осуществление условий S.

Условной вероятностью Р A (В) или называют вероятность события B, вычисленную в предположении, что событие A уже наступило

Условная вероятность вычисляется по формуле

Эту формулу можно доказать исходя из классического определения вероятности.

Пример 3. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероят­ность появления белого шара при втором испытании (событие В ), если при первом испытании был извлечен черный шар (событие А ).

Решение . После первого испытания в урне осталось 5 шаров, из них 3 белых. Искомая условная вероятность Р А (В ) = 3/5.

Этот же результат можно получить по формуле

Р A (В ) =P (АВ )/P (А) (P (А ) > 0).

Действительно, вероятность появления белого шара при первом ис­пытании


P (A ) = 3/6 =1/2.

Найдем вероятность P (АВ ) того, что в первом испытании по­явится черный шар, а во втором - белый по формуле (3.1). Общее число исходов - совместного появления двух шаров, безразлично какого цвета, равно числу размещений = 6 5 = 30. Из этого числа исходов событию АВ благоприятствуют 3 3=9 исходов. Следовательно, P (АВ ) =9/30 = 3/10.

Условная вероятность P А (В ) =P (АВ )/Р (А ) = (3/10)/(1/2) = 3/5. Получен прежний результат.

А также научились решать типовые задачи с независимыми событиями, и сейчас последует гораздо более интересное продолжение, которое позволит не только освоить новый материал, но и, возможно, окажет практическую житейскую помощь.

Кратко повторим, что такое независимость событий: события и являются НЕзависимыми, если вероятность любого из них не зависит от появления либо непоявления другого события. Простейший пример – подбрасывание двух монет. Вероятность выпадения орла либо решки на одной монете никак не зависит от результата броска другой монеты.

Понятие зависимости событий вам тоже знакомо и настал черёд заняться ими вплотную.

Сначала рассмотрим традиционный набор, состоящий из двух событий: событие является зависимым , если помимо случайных факторов его вероятность зависит от появления либо непоявления события . Вероятность события , вычисленная в предположении того, что событие уже произошло , называется условной вероятностью наступления события и обозначается через . При этом события и называют зависимыми событиями (хотя, строго говоря, зависимо только одно из них) .

Карты в руки:

Задача 1

Из колоды в 36 карт последовательно извлекаются 2 карты. Найти вероятность того, что вторая карта окажется червой, если до этого:

а) была извлечена черва;
б) была извлечена карта другой масти.

Решение : рассмотрим событие: – вторая карта будет червой. Совершенно понятно, что вероятность этого события зависит от того, черву или не черву вытянули ранее.

а) Если сначала была извлечена черва (событие ), то в колоде осталось 35 карт, среди которых теперь находится 8 карт червовой масти. По классическому определению :
при условии , что до этого тоже была извлечена черва.

б) Если же сначала была извлечена карта другой масти (событие ), то все 9 черв остались в колоде. По классическому определению :
– вероятность того, что вторая карта окажется червой при условии , что до этого была извлечена карта другой масти.

Всё логично – если вероятность извлечения червы из полной колоды составляет , то при извлечении следующей карты аналогичная вероятность изменится: в первом случае – уменьшится (т.к. черв стало меньше), а во втором – возрастёт: (т.к. все червы остались в колоде).

Ответ :

Зависимых событий, разумеется, может быть и больше. Пока задача не остыла, добавим ещё одно: – третьей картой будет извлечена черва. Предположим, что произошло событие , а затем событие ; тогда в колоде осталось 34 карты, среди которых 7 черв. По классическому определению :
– вероятность наступления события при условии , что до этого были извлечены две червы.

Для самостоятельной тренировки:

Задача 2

В конверте находится 10 лотерейных билетов, среди которых 3 выигрышных. Из конверта последовательно извлекаются билеты. Найти вероятности того, что:

а) 2-й извлечённый билет будет выигрышным, если 1-й был выигрышным;
б) 3-й будет выигрышным, если предыдущие два билета были выигрышными;
в) 4-й будет выигрышным, если предыдущие билеты были выигрышными.

Краткое решение с комментариями в конце урока.

А теперь обратим внимание на один принципиально важный момент: в рассмотренных примерах требовалось найти лишь условные вероятности, при этом предыдущие события считались достоверно состоявшимися . Но ведь в действительности и они являются случайными! Так, в «разогретой» задаче извлечение червы из полной колоды – есть событие случайное, вероятность которого равна .

На практике гораздо чаще требуется отыскать вероятность совместного появления зависимых событий. Как, например, найти вероятность события , состоящего в том, что из полной колоды будет извлечена черва и затем ещё одна черва? Ответ на этот вопрос даёт

теорема умножения вероятностей зависимых событий : вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже произошло:

В нашем случае:
– вероятность того, что из полной колоды будут извлечены 2 червы подряд.

Аналогично:
– вероятность того, что сначала будет извлечена карта другой масти и затем черва.

Вероятность события получилась заметно больше вероятности события , что, в общем-то, было очевидно безо всяких вычислений.

И, само собой, не нужно питать особых надежд, что из конверта с десятью лотерейными билетами (Задача 2) вы вытяните 3 выигрышных билета подряд:
, впрочем, это ещё щедрый шанс.

Да, совершенно верно – теорема умножения вероятностей зависимых событий естественным образом распространяется и на бОльшее их количество.

Закрепим материал несколькими типовыми примерами:

Задача 3

В урне 4 белых и 7 черных шаров. Из урны наудачу один за другим извлекают два шара, не возвращая их обратно. Найти вероятность того, что:

а) оба шара будут белыми;
б) оба шара будут чёрными;
в) сначала будет извлечён белый шар, а затем – чёрный.

Обратите внимание на уточнение «не возвращая их обратно». Этот комментарий дополнительно подчёркивает тот факт, что события зависимы. Действительно, а вдруг извлечённые шары возвращают обратно? В случае возвратной выборки вероятности извлечения чёрного и белого шара меняться не будут, а в такой задаче уже следует руководствоваться теоремой умножения вероятностей НЕзависимых событий .

Решение : всего в урне: 4 + 7 = 11 шаров. Поехали:

а) Рассмотрим события – первый шар будет белым, – второй шар будет белым и найдём вероятность события , состоящего в том, что 1-й шар будет белым и 2-й белым.

По классическому определению вероятности: . Предположим, что белый шар извлечён, тогда в урне останется 10 шаров, среди которых 3 белых, поэтому:
– вероятность извлечения белого шара во 2-м испытании при условии, что до этого был извлечён белый шар.


– вероятность того, что оба шара будут белыми.

б) Найдём вероятность события , состоящего в том, что 1-й шар будет чёрным и 2-й чёрным

По классическому определению: – вероятность того, что в 1-м испытании будет извлечён чёрный шар. Пусть извлечён чёрный шар, тогда в урне останется 10 шаров, среди которых 6 чёрных, следовательно: – вероятность того, что во 2-м испытании будет извлечён чёрный шар при условии, что до этого был извлечен чёрный шар.

По теореме умножения вероятностей зависимых событий:
– вероятность того, что оба шара будут чёрными.

в) Найдём вероятность события (сначала будет извлечён белый шар и затем чёрный)

После извлечения белого шара (с вероятностью ) в урне останется 10 шаров, среди которых 3 белых и 7 чёрных, таким образом: – вероятность того, что во 2-м испытании будет извлечён чёрный шар при условии, что до этого был извлечен белый шар.

По теореме умножения вероятностей зависимых событий:
– искомая вероятность.

Ответ :

Данную задачу нетрудно проверить через теорему сложения вероятностей событий, образующих полную группу . Для этого найдём вероятность 4-го недостающего события: – того, что сначала будет извлечён чёрный шар и затем белый.

События образуют полную группу, поэтому сумма их вероятностей должна равняться единице:
,что и требовалось проверить.

И сразу же предлагаю проверить, насколько хорошо вы усвоили изложенный материал:

Задача 4

Какова вероятность того, что из колоды в 36 карт будут извлечены два туза подряд?

Задача 5

В урне 6 черных, 5 красных и 4 белых шара. Последовательно извлекают три шара. Найти вероятность того, что

а) третий шар окажется белым, если до этого был извлечён черный и красный шар;
б) первый шар окажется черным, второй – красным и третий – белым.

Решения и ответы в конце урока.

Надо сказать, что многие из рассматриваемых задач разрешимы и другим способом, но чтобы не возникло путаницы, пожалуй, вообще о нём умолчу.

Наверное, все заметили, что зависимые события возникают в тех случаях, когда осуществляется некоторая цепочка действий. Однако сама по себе последовательность действий ещё не гарантируют зависимость событий. Пусть, например, студент наугад отвечает на вопросы какого-нибудь теста – данные события хоть и происходят одно за другим, но незнание ответа на один вопрос никак не зависит от незнания других ответов =) Хотя, закономерности тут, конечно, есть =) Тогда совсем простой пример с неоднократным подбрасыванием монеты – сей увлекательный процесс даже так и называется: повторные НЕзависимые испытания .

Я как мог, старался отсрочить этот момент и подбирать разнообразные примеры, но если в задачах на теорему умножения независимых событий хозяйничают стрелки, то здесь происходит самое настоящее нашествие урн с шарами =) Поэтому никуда не деться – снова урна:

Задача 6

Из урны, в которой находится 6 белых и 4 черных шара, извлекаются наудачу один за другим три шара. Найти вероятность того, что:

а) все три шара будут черными;
б) будет не меньше двух шаров черного цвета.

Решение :всего: 6 + 4 = 10 шаров в урне.

Событий в данной задаче будет многовато, и в этой связи целесообразнее использовать смешанный стиль оформления, обозначая прописными латинскими буквами только основные события. Надеюсь, вы уже поняли, по какому принципу подсчитываются условные вероятности.

а) Рассмотрим событие: – все три шара будут черными.

По теореме умножения вероятностей зависимых событий:

б) Второй пункт интереснее, рассмотрим событие: – будет не меньше двух шаров черного цвета. Данное событие состоит в 2 несовместных исходах: либо все шары будут чёрными (событие ) либо 2 шара будут чёрным и 1 белым – обозначим последнее событие буквой .

Событие включается в себя 3 несовместных исхода:

в 1-м испытании извлечён белый и во 2-м и в 3-м испытаниях – чёрные шары
или
и во 2-м – БШ и в 3-м – ЧШ
или
в 1-м испытании извлечён ЧШ и во 2-м – ЧШ и в 3-м – БШ.

Желающие могут ознакомиться с более трудными примерами из сборника Чудесенко , в которых перекладываются несколько шаров. Особым любителям предлагаю задачи повышенной комбинационной сложности – с двумя последовательными перемещениями шаров из 1-й во 2-ю урну, из 2-й в 3-ю и финальным извлечением шара из последней урны – смотрите последние задачи файла Дополнительные задачи на теоремы сложения и умножения вероятностей . Кстати, там немало и других интересных заданий.

А в заключение этой статьи мы разберём прелюбопытнейшую задачу, которой я вас заманивал на самом первом уроке =) Даже не разберём, а проведём небольшое практическое исследование. Выкладки в общем виде будут слишком громоздкие, поэтому рассмотрим конкретный пример:

Петя сдаёт экзамен по теории вероятностей, при этом 20 билетов он знает хорошо, а 10 плохо. Предположим, в первый день экзамен сдаёт часть группы, например, 16 человек, включая нашего героя. В общем, ситуация до боли знакома: студенты один за другим заходят в аудиторию и тянут билеты.

Очевидно, что последовательное извлечение билетов представляет собой цепь зависимых событий, и возникает насущный вопрос : в каком случае Пете с бОльшей вероятностью достанется «хороший» билет – если он пойдёт «в первых рядах», или если зайдёт «посерединке», или если будет тянуть билет в числе последних? Когда лучше заходить?

Сначала рассмотрим «экспериментально чистую» ситуацию, в которой Петя сохраняет свои шансы постоянными – он не получает информацию о том, какие вопросы уже достались однокурсникам, ничего не учит в коридоре, ожидая своей очереди, и т.д.

Рассмотрим событие: – Петя зайдёт в аудиторию самым первым и вытянет «хороший» билет. По классическому определению вероятности: .

Как изменится вероятность извлечения удачного билета, если пропустить вперёд отличницу Настю? В этом случае возможны две несовместные гипотезы:

– Настя вытянет «хороший» (для Пети) билет;
– Настя вытянет «плохой» билет, т.е. увеличит шансы Пети.

Событие же (Петя зайдёт вторым и вытянет «хороший» билет) становится зависимым .

1) Предположим, что Настя с вероятностью «увела» у Пети один удачный билет. Тогда на столе останутся 29 билетов, среди которых 19 «хороших». По классическому определению вероятности:

2) Теперь предположим, что Настя с вероятностью «избавила» Петю от 1-го «плохого» билета. Тогда на столе останутся 29 билетов, среди которых по-прежнему 20 «хороших». По классическому определению:

Используя теоремы сложения вероятностей несовместных и умножения вероятностей зависимых событий, вычислим вероятность того, что Петя вытянет «хороший» билет, будучи вторым в очереди:

Вероятность… осталось той же! Хорошо, рассмотрим событие: – Петя пойдёт третьим, пропустив вперёд Настю и Лену, и вытащит «хороший» билет.

Здесь гипотез будет побольше: дамы могут «обокрасть» джентльмена на 2 удачных билета, либо наоборот – избавить его от 2 неудачных, либо извлечь 1 «хороший» и 1 «плохой» билет. Если провести аналогичные рассуждения, воспользоваться теми же теоремами, то… получится такое же значение вероятности !

Таким образом, чисто с математической точки зрения, без разницы, когда идти – первоначальные вероятности останутся неизменными. НО . Это только усреднённая теоретическая оценка, так, например, если Петя пойдёт последним, то это вовсе не значит, что ему останутся на выбор 10 «хороших» и 5 «плохих» билетов в соответствии с его изначальными шансами. Данное соотношение может варьироваться в лучшую или худшую сторону, однако всё же маловероятно, что среди билетов останется «одна халява», или наоборот – «сплошной ужас». Хотя «уникальные» случаи не исключены – всё-таки тут не 3 миллиона лотерейных билетов с практически нулевой вероятностью крупного выигрыша. Поэтому «невероятное везение» или «злой рок» будут слишком уж преувеличенными высказываниями. Даже если Петя знает всего лишь 3 билета из 30, то его шансы составляют 10%, что заметно выше нуля. И из личного опыта расскажу обратный случай: на экзамене по аналитической геометрии я хорошо знал 24 вопроса из 28, так вот – в билете мне попались два «плохих» вопроса; вероятность сего события подсчитайте самостоятельно:)

Математика и «чистый эксперимент» – это хорошо, но какой стратегии и тактики всё же выгоднее придерживаться в реальных условиях ? Безусловно, следует принять во внимание субъективные факторы, например, «скидку» преподавателя для «храбрецов» или его усталость к концу экзамена. Зачастую эти факторы могут быть даже решающими, но в заключительных рассуждениях я постараюсь не сбрасывать со счетов и дополнительные вероятностные аспекты:

Если Вы готовы к экзамену хорошо, то, наверное, лучше идти «в первых рядах». Пока билетов полный комплект, постулат «маловозможные события не происходят » работает на Вас гораздо в бОльшей степени. Согласитесь, что намного приятнее иметь соотношение «30 билетов, среди которых 2 плохих», чем «15 билетов, среди которых 2 плохих». А то, что два неудачных билета на отдельно взятом экзамене (а не по средней теоретической оценке!) так и останутся на столе – вполне и вполне возможно.

Теперь рассмотрим «ситуацию Пети» – когда студент готов к экзамену достаточно хорошо, но с другой стороны, и «плавает» тоже неплохо. Иными словам, «больше знает, чем не знает». В этом случае целесообразно пропустить вперёд 5-6 человек, и ожидать подходящего момента вне аудитории. Действуйте по ситуации. Довольно скоро начнёт поступать информация, какие билеты вытянули однокурсники (снова зависимые события!) , и на «заигранные» вопросы можно больше не тратить силы – учите и повторяйте другие билеты, повышая тем самым первоначальную вероятность своего успеха. Если «первая партия» экзаменующихся «избавила» вас сразу от 3-4 трудных (лично для Вас) билетов, то выгоднее как можно быстрее попасть на экзамен – именно сейчас шансы значительно возросли. Постарайтесь не упускать момент – всего несколько пропущенных вперёд человек, и преимущество, скорее всего, растает. Если же наоборот, «плохих» билетов вытянули мало – ждите. Через несколько человек эта «аномалия» опять же с большой вероятностью, если не исчезнет, то сгладится в лучшую сторону. В «обычном» и самом распространённом случае выгода тоже есть: расклад «24 билета/8 плохих» будет лучше соотношения «30 билетов/10 плохих». Почему? Трудных билетов теперь не десять, а восемь! С удвоенной энергией штудируем материал!

Если Вы готовы неважно или плохо, то само собой, лучше идти в «последних рядах» (хотя возможны и оригинальные решения, особенно, если нечего терять) . Существует небольшая, но всё же ненулевая вероятность, что Вам останутся относительно простые вопросы + дополнительная зубрёжка + шпоры, которые отдадут отстрелявшиеся сокурсники =) И, да – в совсем критической ситуации есть ещё следующий день, когда экзамен сдаёт вторая часть группы;-)

Замечание. В основе определения вероятности события лежит некоторая совокупность условий . Если никаких ограничений, кроме условий при вычислении вероятности не налагается, то такие вероятности называются безусловными . Однако в ряде случаев приходится рассматривать вероятности событий при дополнительном условии, что произошло некоторое событие В.

Определение 1. Вероятность события А , вычисленная при условии, что имело место другое событие В , называется условной вероятностью события А и обозначается .

Замечание. Строго говоря, безусловные вероятности также являются условными, так как исходным моментом построенной теории было предположение о существовании некоторого неизменного комплекса условий .

Пример 1. Брошены две игральные кости. Чему равна вероятность того, что сумма выпавших на них очков равна 8 (событие А), если известно, что эта сумма есть чётное число (событие В)?

Решение. Построить пространство исходов, найти безусловную вероятность и условную вероятность .

Пример 2. Из колоды карт последовательно вынули 2 карты.

Найти :

а) безусловную вероятность того, что вторая карта окажется тузом (неизвестно, какая карта вышла вначале);

б) условную вероятность того, что вторая карта будет тузом, если первоначально был вынут туз.

Решение. а) Обозначим А - событие, состоящее в появлении туза на втором месте, В - событие, состоящее в появлении туза на первом месте. Событии А можно представить в виде . В силу несовместности событий и имеем . Общее число случаев вынуть из колоды в 36 карт 2 карты (выборка без повторений с учетом порядка!). Событию будут благоприятны исхода, а событию будут благоприятны исхода. Тогда .

б) Если первая вынутая карта - туз, то в колоде осталось 35 карт и среди них только 3 туза. Следовательно .

Общее решение задачи о нахождении условной вероятности для классического определения вероятности:

Пусть из единственно возможных, несовместных и равновероятных событий , , …, событию А благоприятствует m событий, событию В - k событий, событию АВ - r событий (, ). Если событий В произошло, то это означает, что наступило одно из событий , благоприятных событию В. При этом условии событию А благоприятствуют r и только r событий , благоприятных АВ. Таким образом . (1)

Аналогично, если , то . (1’)

Если В (соответственно, А) есть невозможное событие, то равенство (1) (соответственно (1’)) теряет смысл.

При каждое из равенств (1) и (1’) равносильно так называемой теореме умножения вероятностей.

Теорема умножения вероятностей. Вероятность произведения событий А и В равна произведению вероятности одного из этих событий на условную вероятность другого, при условии, что первое произошло: (2).


Доказательство теоремы умножения вероятностей для классической схемы случаев . Пусть из единственно возможных, несовместных и равновероятных событий , , …, событию А благоприятствует m событий, событию В - k событий, событию АВ - r событий (, ). Тогда , , а (из общего решения задачи о нахождении условной вероятности). Подставляя полученные значения вероятностей в формулу (2), получим тождество. Теорема доказана.

Замечание. Теорема умножения справедлива и в том случае, когда одно из событий А или В есть невозможное событие, так как в этом случае вместе с имеют место равенства и .

Следствие. Вероятность совместного появления нескольких зависимых событий равна произведению вероятности одного из них на условные вероятности всех остальных, причем вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились.

Пример 3. В ящике находится 5 белых, 4 черных и 3 синих шара. Каждое испытание состоит в том, что наудачу извлекают один шар, не возвращая его в ящик. Найти вероятность того, что при первом испытании появится белый шар, при втором - черный и при третьем - синий.

Решение. Пусть событие А - при первом испытании появится белый шар, событие В - при втором испытании появится черный шар; событие С - при третьем испытании появится синий шар. Вероятность появления белого шара при первом испытании . Вероятность появления черного шара при втором испытании, вычисленная в предположении, что при первом испытании появился белый шар, то есть условная вероятность . Вероятность появления синего шара в третьем испытании, вычисленная в предположении, что при первом испытании появился белый шар, а при втором черный: . Так как события А, В и С совместны, то искомая вероятность

Определение 2. Событие А называется независимым от события В , если вероятность события А не зависит от того, произошло событие В или нет:

(наступление события В не меняет вероятности события А).

Определение 3. Событие А называется зависимым от события В , если вероятность события А меняется в зависимости от того, произошло событие В или нет.

Замечание 1. Если событие А независимо от события В, то в силу (2) имеет место равенство Отсюда следует, что , (4)

Т.е. событие В также независимо от А. Таким образом, при сделанном предположении свойство независимости событий взаимно.

Замечание 2. Понятие независимости событий играет значительную роль в теории вероятностей и её приложениях. В практических вопросах для определения независимости событий редко обращаются к выполнению равенств (3) и (4). Обычно для этого пользуются интуитивными соображениями, основанными на опыте (пример с монетой и др.). Для независимых событий теорема умножения вероятностей имеет наиболее простой вид.

Теорема умножения вероятностей для независимых событий. Вероятность произведения двух независимых событий равна произведению их вероятностей:

Замечание 3. Если независимость событий определить посредством равенства , то это определение верно всегда, в том числе и тогда, когда и .

Определение 4. События , , …, называются независимыми в совокупности , если для любого события из их числа и произвольных , , …, взаимно независимы.

Замечание 4. В силу замечания 3 это определение эквивалентно следующему.

Определение 4. При любых и .

Замечание 5. Для независимости в совокупности нескольких событий недостаточно их попарной независимости.

Пример. Грани тетраэдра окрашены: 1-я - в красный цвет, 2-я - в зелёный, 3-я - в синий, 4-я - во все эти 4 цвета (АВС). Легко видеть, что вероятность того, что грань, на которую упадёт тетраэдр при бросании, имеет красный цвет, равна 0,5: граней 4, 2 из них имеют в окраске красный цвет. Тогда . Аналогично можно подсчитать, что

Таким образом, события А, В, С попарно независимы. Однако, если осуществились события В и С вместе, то и осуществилось событие А, т.е. . Следовательно, события А, В и С в совокупности зависимы.

Обобщение теоремы умножения вероятностей на случай произвольного конечного числа независимых событий: .

Пример 4. Вероятность того, что стрелок при одном выстреле попадет в мишень, равна . Стрелок произвел три выстрела. Найти вероятность того, что он попал три раза.

Решение. Пусть событие А - стрелок попал в мишень при первом выстреле, событие В - стрелок попал в мишень при втором выстреле; событие С - стрелок попал в мишень при третьем выстреле. Вероятности этих событий по условию равны между собой: . Так как вероятность попадания в цель при каждом из выстрелов не зависит от результата остальных выстрелов, то все три события независимы в совокупности, тогда .

Следствие. (Теорема о вероятности появления хотя бы одного из совокупности независимых событий). Вероятность появления хотя бы одного из совокупности независимых событий А А

Включайся в дискуссию
Читайте также
Разработчики сообщили, когда выйдет третий сезон игры по «Ходячим мертвецам
Изменения ветки советских ст
Тревор Филлипс — лучший протагонист GTA V?